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Abshact  In one-dimensional disordered systems all states am localized but when you add local 
correlations. such as a dimer impurity. some states become delocalized. In this paper, a wide 
range of correlations are studied leading to a delocalktion of states. Moreover, second-nearest- 
neighbour models which also have extended states are investigated. Finally. a new approach 
to the m e  of two dimeasions is presented, using a ma(rix-transfer technique, where explicit 
extended states a~ found. 

1. Introduction 

The localization properties of disordered systems were first examined by Anderson [I], 
who showed that certain states are localized due to disorder. His result was generalized 
by Mott and Twose [2] who proved that, in one dimension, all states are localized for any 
amount of disorder. This study was extended to higher dimensions by the ‘gang of four’ 
[3] using scaling properties. The conclusions of most existing studies on localization in 
two-dimensional disordered systems, as well as numerical studies [4], show that all states 
are also localized in two dimensions for any amount of disorder [5]. 

However, when local correlations are added to a disordered system, all states are no 
longer localized; sufficient extended states exist to alter the conduction properties. This was 
first shown by Flores [6] for the off-diagonal disordered discrete one-dimensional system. 
Very recently, Si1 et al [7] found that all states are extended for a particular off-diagonal 
disordered model. A continuous model with delta impurities exhibiting delocalization for 
dimer-type correlations was studied by Sanchez et al [SI. Dunlap ef al [9] worked out the 
extended states of the diagonal disordered system with dimer impurities. The diagonal dimer 
model was then extensively studied by Bovier [IO] and by Flores and Hilke [ I  I]. The model 
studied was a two-value random potential where the neighbour sites were equal by pairs. 
This model exhibits a localization length that diverges as l/EZ around the delocalized state. 
This behaviour is not altered very much for states at the edges where a 1/E or a I/@ 
dependence is found [9-111. Evangelou and Economou [I21 showed that the localization 
properties are essentially the same if, instead of considering a dimer impurity, larger clusters 
are examined with the main result being that the number of energies at which extended states 
exist is related to the size of the cluster. 

In the following section we will study more general correlations. In particular, a model 
is presented where delocalized states exist for any type of disorder. 

The third section is devoted to the study of a second-nearest-neighbour model. The main 
conclusion is that the localization properties of this model are essentially the same as those of 
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the nearest-neighbour model. In fact, by inducing specific correlations among the disordered 
sites, we calculate explicit extended wavefunctions. However, the divergence around the 
energy at which extended states exist has a different dependence on the localization length. 
The divergence i s  stronger than 1/E,  which may be interpreted as there being fewer extended 
states than in the nearest-neighbour model where the dependence can be I/EZ. 

Finally, in section 4, we present a new approach to the case of two dimensions. We 
map the two-dimensional problem onto a one-dimensonal discrete model in which we have 
nearest-neighbour hopping plus long-range hopping of the width of the system. If we 
correlate the disordered site energies in a similar way as for the dimer model, the system 
possesses completely extended states around a certain energy E,. Away from this energy 
the localization length behaves as I/- and 1 / [ E  -Ee l .  

2. Correlations in one dimension 

Let us consider the disordered diagonal tight-binding model described by the following 
Hamiltonian 

H = KlO(ll + IO(l+ It + V)( l  - 11 ( 1 )  
f 

where Il} can be regarded as an atomic-like orbital centred at site 1 E 2 and V, is a random 
potential. To solve the Schrodinger equation HI@) = E l @ ) ,  we develop the wavefunction 
in a discrete space 

The Schrijdinger equation can then be written as 

@ n + ~  + $0-1 = ( E  - v n ) h  (3) 

where V. are random variables. 
This equation can be written in a different form using the transfer-matrix technique, 

Or, by redefining the variables 

*"+I = Tn ' *n  

where 

(5) 

It follows from equation (5) that 
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Therefore, the relevant quantity to study is the product of these transfer matrices. 
The simplest way to construct an extended wavefunction is to look at a product of 

transfer matrices. If one of the products gives an identity matrix, it will be easy to calculate 
the states. The simplest example of this is to take E = Vo, thus, T: = --I where I is the 
identity matrix. Now, if one considers a two-value random number, for example V,, = i V ,  
then for the energies E = V or E = -V the product of two identical transfer matrices 
equals - I .  Let us now consider the following impurity model at E = V with two different 
sites. The first is a pair site with V,,+l = V, = V which we will call site A and the 
second is a V, = W site called site B. Site A can be evaluated as the product of two 
transfer matrices with values E - V = 0 giving -1. Therefore, the A sites will not alter 
the localization properties of this model. On the other hand, the B sites will be determinant 
for these properties. Defining the localization length L, as 
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shows that the localization length is mainly given by the logarithm of the eigenvalues of the 
product of the transfer matrices. As A sites do not contribute to the product, the localization 
length will be simply given by the absolute value of the inverse of the logarithm of the 
eigenvalues, as the eigenvalues of a product of identical matrices are simply the product of 
the eigenvalues. (The product of the two eigenvalues of one matrix is one, therefore their 
logarithm is equal in absolute values.) The eigenvalues of a 2 x 2 matrix can be expressed 

(9) 

As the determinant is always 1, the condition for the eigenvalues of site B being of modulus 
1 is 

(10) 

as 

Eig(A) = i[Tr(A) * J(TI(A))~ - 4Det(A)]. 

I w - VI < 2. 

If the corresponding transfer matrix of site B has eigenvalues of modulus 1, equation (7) 
immediately tells us that the state will be extended. This is probably the simplest example 
of a delocalized state due to a local correlation for a diagonal disorder. This model is almost 
equivalent to the first one proposed in [9] except that the B site is not a pair site. However, 
the localization properties are exactly the same. 

We can now generalize this procedure to more sites. Let us call the sequence with the 
sites VI, Vz, V3,.  . . site A and the one with the sequence W I ,  W2, W 3 , .  . . site B. To each 
of the two sites we associate the corresponding transfer matrix TA and TB, respectively. 
Hence, 

E - V I  - 1 ) ( E ; V z  - 1 ) ( E - V 3  -1 
T A = (  0 0 1 

and equivalently for TB. The simplest construction of extended states is to take Tt, = il 
and TB = &I where I is the identity matrix. For two sites A we get the following conditions 

E, - VI = 0 and Ec - v* = 0. (12) 

E, being the energy for which the states are extended. We can continue this procedure for 
different numbers of sites. However, the next interesting result comes from considering 
four sites where the conditions on the Vns are obtained by calculating i"' = - I  and yield 

v; = VI and v, = v,. (13) 
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(13) shows that we can consider one random variable VI and correlate the other potentials 
to VI. The only constraint on VI is that it cannot be singular. V, is then defined as 

For the ensuing discussion we will consider the simplest case where Ec = 0. The more 
general case E, # 0 does not affect the conclusions but makes the discussion less transparent. 
The correlation (13) then becomes 

(15) 
2 2 
VI VI 

V, VI and V4 = -. v, = - 

We can now consider any random distribution P of Vl excluding 0, hence 

P : V, E Re-{O). (16) 

In short, a disordered system with correlations between neighbouring sites, obeying (15), 
will have extended states for E = 0. 

We will now study what happens around the energy E = O + E .  In order to estimate the 
divergence of the localization length as a function of E ,  we evaluate the eigenvalues b of 

T A = (  E - v  1 -1 o ) (  E - Z / V  1 - l ) ( , ; V  0 ;y-y -1) 0 '  (17) 

The result for the eigenvalues is the following: 

h * = - l +  2 + - + -  E - - + v  € + - E 4 & E  - 4 - - - v z +  2 + -  E ( ;2 7 )  (; ) 2 ' L  ( 9 
8 1 2  + S +  + - + 2 ~ 2  + ~ 4 1 4  € 2 -  - + - + 6 V  + ~ ' € 3  ( ; ;2 ) v3 v 

If the expression inside the square root is negative then IAl = 1, as the eigenvalues are 
complex conjugates of each other. On the other hand, if this expression is positive, which 
is essentially the case when V > I / E  or V < E ,  we have, if c l  V >> 1 

A - E'/ V'. (19) 

This would lead to a localization length depending on the energy like ( 2 l n ( ~ / V ) ) - ' .  
As E / V  is large in this case, the localization length would be microscopic. In order to 
have a more interesting bound on this localization length, we apply one of Wittmeyer's [I31 
theorems for non-extreme values of V on eigenvalues resulting in the following statemerd: 

(20) IEig(ABC. ..)If < (Eig(ATA)-)1/Z(Eig(BTB)mJ;I)1/2(Eig(CTC)mnx)1/z.. . . 
Evaluating the eigenvalues A+ of T z T A  to first order in E ,  we obtain 

A * = ~ * L Y E  (21) 
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where [Y = JS + 16/ V4 + 16/V2 + 4V2 + V4. The product of As is therefore an upper 
bound to the inverse of the localization length. Of course, the dependence of the localization 
length on E will be influenced strongly by the distribution of the disordered site energies 
V. However, for a distibution in which V does not take values too close to 0 or 00, the 
localization length divergence would be bound by a 1 / E  dependence as given by equation 
(21). This result can be extended to the case E, # 0 and using the definition (8) of the 
localization length L, we have the bound 

where a is evaluated at its maximum value. 
In summary, in this section we have studied different kinds of correlations between 

neighbouring sites, generalizing the results of 19-12], The main result is the study of a 
model admitting any type of disorder dishibution which exhibits delocalization at a critical 
energy. The behaviour of the localization length near the critical energy depends strongly 
on the choice of the distribution but for a non-singular distribution we have a weaker 
divergence than 1 / E  which is similar to the dimer model where the divergence varies 
between 1 /E2  and 1 / E  (inside the band). We have also studied models with clusters larger 
than four sites. Though the main features remain very similar, the number of free parameters 
differ. For clusters of size four we saw that we have one random variable fixing the other 
three variables. For clusters of size five and six we have two and three free parameters, 
respectively. But the next size of cluster, i.e. seven, has again only three free parameters. 
The relation between the number of free parameters and the size of the cluster is therefore 
non-trivial. 

3. Second-nearest-neighbour model 

In most cases, the tight-binding model relating a given system to a discrete Schodinger 
equation supposes that only nearest-neighbour interactions are relevanr In the following, we 
study the effect of a second-nearest-neighbour hopping matrix element on the localization 
properties of a diagonal disordered system. For the sake of simplicity, we will consider the 
following second-nearest-neighbour interaction model: 

q n t 2  + q n t 1  + Fn-1 + q n - 2  = ( E  - Vn)?nl,. (23) 

This equation can be related to the following transfer-matrix formulation: 

Or, by redefining the variables 

We can now study the eigenvalue properties of T,. In fact, T, admits four eigenvalues of 
modulus 1 if -2 < E - V,, < 0. For further study we will restrict ourselves to either 
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Ec - V, = 0 or E,  - V,,, = -2. The localization properties of the system will then be 
described by the product of the transfer matrices n, T.. We define site A as the one with 
Ec - VA = -2 and site B the one with Ec - VB = 0. By iterating the transfer matrices 
for clusters of the type AAA and BAB it turns out numerically that all eigenvalues of n, T, are of modulus 1. This result can be understood analytically as one solution to the 
corresponding Scbrodinger equation (22) 

@3ntl  = 0 

This can be easily verified by inserting (26) into (23) and by noting that E, - V3.+1 = -2 
and V - 3n + 2 = V3". This solution for the cluster AAAlBAB is clearly overall extended. 

Extended solutions to the disordered problem can also be obtained for other clusters; 
for example: ABAIBBB, ABBIBAB, BABIBBA, ABBlBBA.. . , The common point to all 
these clusters is the fact that there is a long-range order in the sense that, for example, in 
the first cluster the 3n + 2 site is always B. On the other hand, there also exist clusters with 
no long-range order, as ABBAlB and ABBAIBBB, for example, which do exhibit extended 
states. 

In order to relate the degree of delocalization of the states to the model with only nearest- 
neighbour interaction, we evaluate the localization-length dependence on the energy. We 
will use the model corresponding to (26) which is based on clusters of the form AAAIBAB. 
The idea is to evaluate the product of transfer matrices when E - VA = -2 + E and 
E - V, = e .  The simplest sequence of impurities giving rise to eigenvalues of modulus 
different from 1 is BABAAAAAA. We evaluate the eigenvalues to the first order in E 
of the corresponding product of transfer mamces which is TBTATBTATATATATATA. The 
eigenvalues A of modulus closest to 1 are 

h = l + &  E > O  

h2=1-33E E < O .  

As this is a particular sequence of site distribution leading to a divergence of the eigenvalues 
of an infinite product of transfer matrices, it would give a lower bound for this kind of 
divergence. Calculating the localization length with the help of equation (27). we obtain 

(28) 

where K and K' are proportionality constants. The sequence studied here exhibits 
delocalized states if E - VA = -2 and E - VB = 0. This is actually not a general feature 
as the sequence ABBIBAB has delocalized states for E, - VA = -U and Ec - VB = 0 with 
0 < U < 4. This is a property which is equivalent to the dimer model with first-nearest- 
neighbour hopping except that 0 < U < 2. The difference in the maximum value of U can 
be explained sice the energy bandwidth of the nondisordered model is 4 in contrast to the 
second-nearest-neighbour model which has a bandwidth of 6.25. 
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The solution is the following 

hn = e  ikn where U - 2 = cask 

In order to verify that (29) is the solution, one has to take into account that we can rewrite 
EC - V3. = -Wn, E, - V3"+i = W, - U and E - V3n+2 = 0 with W. = 0 or U. In addition 

In the limit of n + 03, pG + 0. The solution (29) is therefore essentially independent of 
the disorder. 

We also studied the behaviour of the localization length around EE. As before, we 
define E as E - VA = -U + E  and E - V' = E. The next step is to find a simple sequence 
leading to the eigenvalues all having a modulus different to 1. The sequence is, for instance, 
ABBBABBAB. We now evaluate the corresponding eigenvalues to the leading orders in 
E .  The result is essentially the same as for the previous case, i.e. (28), except for a single 
value of U = 1 where 

(31) 

This is actually the strongest non-exponential divergence observed for this type of model. 
We have shown in this section that extended states exist for a disordered system with second- 
nearest-neighbour interaction if local correlations between neighbouring sites exist. In our 
derivation we have only considered the case where the second-nearest-neighbour interaction 
is the same as the nearest-neighbour interaction. However, the results are essentially the 
same except that the transfer matrix T,, admits modular 1 eigenvalues for different values 
of E - V,,. We also derived the dependence in energy of the localization length beyond 
the extended states regime. The behaviour being stronger than a 1/E, I/& or I/E'14 
dependence. 

In comparison to the dimer or polymer model [9,12] of the next-nearest-neighbour 
model where the localization length diverges as 1/E2 for non-extreme values, the second- 
nearest-neighbour model exhibits a stronger localization, at least for the localization length. 
This does not actually imply that fewer states are extended as the only way to decide on 
this would be to compute the density of states near the critical energy and this task seems 
to be a difficult one. 

4. Two-dimensional correlated disordered systems 

In this section we develop a new approach to two-dimensional sytems which is different 
from the usual transfer-matrix approach where one considers a system of width a [4]. This 
ship is then iterated to the desired length. The main incovenience of this method is that 
one deals with very large non-trivial mahices. The size of the matrices are 2a x 2a and 
each contains 2n random-site potentials. This approach is very successful for numerical 
calculations but not for analytical results. 
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We start with the following diagonal-disordered discrete Schrodinger equation 

(Vn,m - Q@n.m + +n,m+~ + @ n , m - ~  + @n+l.n + +n-l.m = 0. (32) 

We now consider a rectangular geometry of width a with the following periodic boundary 
conditions 

$a+t.m = $l.m+l and @a,m = $ o . ~ + I .  (33) 

These boundary conditions correspond to periodic ones with a shift of one unit. In the 
continuum limit they are periodic. Equation (32) can then be rewritten as 

(V" - + A+. + @--a + @*+I +@"-I = 0 (34) 

where 

@ m + n  = $n.m and Vnm + Vom+n. (35) 

We could write equation (34) as a 2a x2a transfer matrix with one random-site potential per 
matrix but we can derive explicit extended states directly from the equation. We consider 
impurities of the form ABlBB where Ee - VA = U and E, - VB = 0 then (34) yields 

(VZ, - E)& 4- &+# + &-a + @Z,+1+ 4b-I = 0 

&tt+e + &tl-o + &t2 + 4 n  = 0. (36) 

We now consider only the case where U is odd and, by defining b as 2b + 1 = a, equation 
(36) becomes 

(Vb - E)& + h ( n + b ) + l  + @Z(n-b)-l f b+l + &-I = 0 

@Z(n+b+l) + h - b )  + h + 2  + 4% O. (37) 

Therefore, the second part of equation (37) depends only on @& and is independent of the 
disorder. This clearly shows that the states will be overall extended for any value of U with 
the simplest solution being 

& = 0 &+] = (-1)[z"+'/~l.  (38) 

In the following we study this model for &-VA = U - - E  and Ec- VB = --E. Equations (34) 
and (37) then yield 

(vk - Ec + €)& f @Z(o+b)+l + h n - b ) - l  f @b+l &-I = 0 

€&+I + &+b) + h ( n - b )  f @ h + 2  f & = 0. (39) 

By defining 



Local correlations in one- and two-dimensional disordered systems 4781 

we obtain from (39) that 

w"Yn + €M%I + Y"+* + %-A = 0. (40) 

Ye can then be written as a sum of products of the type W, W, . . . Yn0, E M  W, . . . Yno or 
E,+&.,. . . Yn0 where 0 < no < 2a. Thus, the only products contributing to the localization 
length are those whose eigenvalues are of modulus different from one. Hence, products 
which are of the form eMWn, Their corresponding eigenvalues are 

E i g ( t u W n ) = l + m  E V * > O  

Eig(tM W,) = 1 + ZtV, EV, < 0. 

In the case when V,, z 0 the localization length is given by 

L, = 11- ( E  - E,) > 0 

Lc 1/21E - ECl ( E  - E,) c 0. 

5. Conclusions 

Correlations between random sites can considerably alter the localization properties of 
disordered systems. The correlations presented in section 2 give rise to extended states 
for particular values of the energy, i.e. Ec. None of the correlations investigated lead to 
an energy band of delocalized states in the limit of infinite length. It would, however, be 
interesting to find out whether such a system exists. In the case of non-diagonal disorder 
Si1 ef a1 [7] found such a system. The model we studied most intensively is a cluster of 
four sites. The main new feature of this model is that it leads to delocalized states for any 
kind of random distribution contrary to models studied earlier which admitted an essentially 
two-value distribution. Each cluster is then parametrized by one random variable. If we 
equate the size L of the system with the localization length we can evaluate the energy 
bandwidth A E  for which the states are overall extended. Using equation (22.) we have 

AE d / L .  (43) 

a varies with the type of distribution chosen but is finite if the distribution avoids certain 
singular values such as Ec. Equation (43) clearly shows that the bandwidth drops to zero 
as a power law. This is very different to the Azbel [14] resonances where the bandwidth 
vanishes exponentially. The powerlaw decrease may, on the contrary, give rise to a non-zero 
conductivity as was first shown by Dunlap et a1 [9]. 

In section 3 the main question we tried to answer was what happens if one includes 
second-nearest-neighbour hopping. The main answer is that we also obtain extended states 
for particular values of the energy i.e. Ec,  However, there are several differences. First, 
the correlations between the sites must have more constraints for the same size of clusters. 
We only found extended states for clusters larger than three. Second, the divergence of the 
localization length is always stronger than 1/E and we did not find any l / E Z  dependence. 
The strongest divergence found is actually a l/Ei/4 dependence. This seems to indicate that 
introducing second-nearest-neighbour hopping has a tendency to increase the localization 
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of the extended states. It would then be interesting to study the density of states in order 
to estimate the impact on the conduction properties. 

Finally, in the fourth section we found explicit extended states for a two-dimensional 
disordered tight-binding model. The disorder we considered is one in which every second 
site is random. For this model we find essentially the same features as in the onedimensional 
systems. The divergence of the localization length around the critical energy is of the type 
1 / E  or I /& depending on the sign of the pertubation. We can point out that we could 
always calculate explicitly the wavefunction for the case where the energy was critical 
in the sense that the states are extended for this energy. The difficult task is to find the 
correlations leading to delocalization at a given energy and then to work out what happens 
around these energies. The localization length can often be estimated but other functions 
such as the conductivity or the density of states are more difficult to obtain. It would be 
very interesting to be able to calculate these functions also. 
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